Зарегистрироваться

Квантовая химия

Категории Квантовая химия | Под редакцией сообщества: Химия

Квантовая химия - раздел теоретической химии, в котором строение и свойства химических соединений, их взаимодействие и превращения в химических реакциях рассматриваются на основе представлений и с помощью методов квантовой механики.

Квантовая химия тесно связана с экспериментально установленными закономерностями в свойствах и поведении химических соединений.

Становление квантовой химии

Начало развитию квантовой химии положили работы ряда исследователей, выполненные в период становления квантовой механики. В. Гайзенберг (1926) впервые провел расчет атома гелия. В. Гайтлер и Ф. Лондон на примере молекулы водорода дали квантово-механическую интерпретацию ковалентной связи. Быстрое развитие в этот период самой квантовой механики, её математического аппарата привело к радужным надеждам на то, что в химии все становится предсказуемым, нужны лишь только хорошие расчетные методы, позволяющие решать уравнение Шрёдингера для каждой конкретной системы. Достаточно напомнить высказывание П. Дирака, относящееся к 1929 г. и долгое время повторявшееся во многих учебниках по квантовой механике и квантовой химии: “The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation” (Proc. Roy. Soc. A, 1929, v. 123, p. 714). Сегодня однако после длительного периода развития квантовой химии уже нет сомнений в том, что не все так просто с известностью законов, лежащих в основе химии, как таковой. К тому же эйфория  от успехов первоначальных расчетов достаточно быстро прошла, хотя на долгие годы и осталось убеждение, что “природа химической связи” полностью прояснилась.

Подход Гайтлера и Лондона был развит далее в работах Дж. Слэтера и Л. Полинга и получил название метода валентных схем. На основе этих работ была дана интерпретация двум типам химической связи, ковалентной (Г. Н. Льюис) и ионной (В. Коссель), которая далее была дополнена практически непрерывным набором промежуточных типов: полярная связь, донорно-акцепторная и дативная связи, водородная связь, трехцентровая и многоцентровые связи и др.

Наряду с этими представлениями активно развивалась картина, присущая методу молекулярных орбиталей, в которой одноэлектронные волновые функции (орбитали) относилиь ко всей молекуле в целом. Основы этого подхода были заложены в работах Ф.Хунда, Р. Малликена, Дж. Леннард-Джонса и Э. Хюккеля. Возникло, таким образом, две линии интерпретации, одна из них использовала идеологию метода валентных схем, основанную на представлениях о гибридизованных орбиталях атомов в молекулах и образовании на их основе локализованных орбиталей химических связей, вторая – идеологию метода молекулярных орбиталей, относящихся ко всей молекуле в целом и имеющих характер волновых функций отдельных электронов, находящихся в потенциальном поле ядер и усредненном поле остальных электронов.

Характерной особенностью этих подходов было то, что разрабатывались они практически только для не зависящих от времени, стационарных состояний: для интерпретации типов соответствующих химических связей, для оценок энергий переходов, для анализа распределения электронной плотности в конкретной молекуле и создаваемого ею электростатического потенциала и т. п. В какой-то степени получаемая информация использовалась и для анализа проблем, связанных с химическими реакциями, например для обсуждения реакционной способности соединений, что, хотя и косвенно, позволяло сопоставлять поведение соединений в однотипных реакциях.

 

Общая схема приближений при решении задач квантовой химии

Квантовохимическое рассмотрение молекулярных систем начинается с записи уравнения Шрёдингера, зависящего от всех переменных, определяющих положения электронов и ядер, и от времени. Для свободных систем или систем, находящихся во внешнем поле, не зависящем от времени, это уравнение сводится к стационарному уравнению , не содержащему времени в качестве переменной. Для стационарного уравнения далее обычно вводится адиабатическое приближение, согласно которому можно отдельно рассмотреть поведение электронов в поле произвольной, но фиксированной конфигурации ядер и поведение системы ядер в поле, полученном усреднением по всем возможным расположениям электронов. При этом получается, что энергия системы электронов для каждого ее состояния зависит от координат ядер, как от параметров, и в то же время она играет роль потенциала, определяющего поведение ядер молекулы для этого состояния электронов. С геометрической точки зрения электронная энергия как функция координат ядер может быть представлена многомерной поверхностью, называемой поверхностью потенциальной энергии.

Для электронного уравнения в качестве следующего шага сначала вводится одноэлектронное приближение, когда предполагается, что поведение каждого электрона определяется усредненным полем всех остальных электронов и следовательно – одноэлектронной функцией, называемой орбиталью либо при учете и спина электрона – спин-орбиталью. При этом волновая функция системы электронов представляется нормированным определителем, составленным из спин-орбиталей. Для нахождения спин-орбиталей был развит метод Хартри - Фока, или метод самосогласованного поля. Такой подход, не учитывает того обстоятельства, что на самом деле вероятность нахождения данного электрона в данной точке пространства должна зависеть от того, какова конкретная конфигурация остальных электронов, т.е. эта вероятность коррелирована с расположением остальных электронов в системе. Другими словами, волновая функция системы электронов должна учитывать электронную корреляцию.

Для учета электронной корреляции было предложено множество методов, основанных на вариационном принципе квантовой механики и теории возмущений. Во многих из них волновая функция электронной подсистемы молекулы представляется в виде линейной комбинации определителей, составленных из спин-орбиталей, а коэффициенты в этих линейных комбинациях определяются на основании различных критериев. Для упрощения расчетов представление в виде линейных комбинаций некоторых (базисных) функций с подлежащими определению коэффициентами часто используется и для молекулярных орбиталей.

При наличии внешнего поля, явно зависящего от времени, например при воздействии электромагнитного излучения на молекулу, обычно прибегают к рассмотрению поведения системы на основе теории возмущений, по крайней мере на тех временных интервалах, где такое рассмотрение допустимо.

Для решения ядерного уравнения также развито множество методов, начиная с простейшего подхода представления поверхности потенциальной энергии в виде многомерной параболы и кончая прямым численным решением задачи, по крайней мере для части ядерных переменных. При параболической аппроксимации потенциала задачу можно свести к нахождению решений для системы одномерных движений, называемых гармоническими колебаниями, или модами. Такой подход достаточно оправдан вблизи равновесной геометрической конфигурации ядер молекулы, однако его приходится уточнять, а следовательно, и усложнять (а подчас и отказываться от него) по мере перехода к возбужденным колебательным состояниям. При анализе динамических задач, когда требуется учет явной зависимости состояния системы от времени, часто прибегают к полуклассическому рассмотрению изменения состояния ядерной подсистемы, опираясь на значительность масс ядер.

Расцвет полуэмпирических методов

В связи с поиском приемлемых по своим затратам методов расчета электронной структуры молекул в 60-х годах прошлого столетия был предложен широкий спектр методов, основанных на пренебрежении частью интегралов, входящих в уравнения для определения коэффициентов в молекулярных орбиталях, представленных в виде линейной комбинации базисных функций. Возможность такого пренебрежения определялась тем, что входящие в интегралы произведения локализованных базисных функций при их центрировании на ядрах атомов, не связанных химически согласно структурной формуле молекулы, близки к нулю, т.е. их (дифференциальное) перекрывание было весьма малым. Все развиваемые в этот период методы опирались на приближение нулевого дифференциального перекрывания. С целью исправления вносимых при пренебрежении перекрыванием ошибок часть оставшихся интегралов заменялась на параметры, определяемые из сравнения получаемых результатов с экспериментальными данными, в силу чего сами методы приобрели характер полуэмпирических.

Существенной особенностью полуэмпирических методов того периода была опора на молекулярно-орбитальный подход. С целью приблизить общую картину описания электронной структуры к используемой в наглядной классической картине – атомы в молекуле, локализованные связи, неподеленные электронные пары и т. п. – параллельно предпринимались попытки перейти от орбиталей, относящихся ко всей молекуле, к орбиталям, локализованным на отдельных фрагментах. Был предложен ряд конструкций, приводящих к практически совпадающим результатам: появились орбитали, которые в существенной степени соответствовали остовным орбиталям атомов в молекулах, орбиталям отдельных связей и т.п. Будучи наглядными, такие конструкции теряли однако ряд полезных сторон молекулярно-орбитального подхода, связанных, в частности, с понятием орбитальной энергии, присущей каждому отдельному электрону в молекуле, понятием, которое широко использовалось при интерпретации молекулярных спектров, при оценках потенциалов ионизации и сродства к электрону.

На этом этапе развития представлений квантовой химии определяющую роль в достижении качественно правильных результатов играли представления о симметрии молекулярной системы в целом и о локальной симметрии её отдельных фрагментов. Именно эти представления, например, позволили И. В. Станкевичу и А. А. Бочвару предсказать возможность существования молекулы фуллерена С60 за несколько лет до его получения. Именно эти представления позволили создать столь мощную по своей предсказательной силе конструкцию, как теория сохранения орбитальной симметрии, разработанную Р. Вудвордом и Р. Хоффманом.

В рамках теории сохранения орбитальной симметрии сохранялась идея о молекулярных орбиталях, однако они рассматривались уже не для одной, равновесной конфигурации ядер молекулы, а прослеживалось их изменение при некотором непрерывном переходе от одной конфигурации ядер к другой (от исходных веществ к продуктам реакции).При этом, естественно, было принято предположение о непрерывности изменения формы орбиталей и соответствующих орбитальных энергий. Сохранение симметрии конфигурации ядер при таком переходе и обусловленной ею симметрии молекулярных орбиталей, а также выяснение того, как меняются орбитальные энергии орбиталей одного и того же типа симметрии, позволило сформулировать правила, определяющие более вероятный или менее вероятный путь превращений в хода данной химической реакции.

 

Методы функционала плотности

Следующий важный шаг в развитии теоретических представлений, приближенных к обычным химическим представлениям, был связан с идеей, зародившейся практически на заре создания квантовой теории и сводящейся к следующему. Волновая функция многоатомной молекулы зависит от весьма большого числа переменных, а потому при ее использовании теряется наглядность представления результатов, ясность физической картины как таковой. Желательно было бы перейти к более простым функциям, например к функции распределения в пространстве электронной плотности, зависящей всего от трех пространственных переменных. В общей формулировке для произвольного электронного состояния этого сделать нельзя. Тем не менее, начиная с конца 30-х годов прошлого века предпринимались неоднократные попытки записать уравнения Хартри - Фока так, чтобы они содержали при вычислении потенциалов межэлектронного взаимодействия не орбитали, а только лишь электронную плотность. Были предложены методы, на модельном уровне учесть это стремление.

Существенный прогресс в этих попытках был достигнут лишь после того, как в 1964 году Вальтером Коном и Пьером Хоэнбергом была доказана теорема, утверждающая, что электронная волновая функция основного состояния однозначно определяется заданием распределения электронной плотности, так что электронная энергия, как впрочем и все другие свойства, определяются полностью заданием электронной плотности. К сожалению, при этот остался открытым вопрос, каков конкретный вид этих зависимостей от электронной плотности.

Из теоремы Хоэнберга - Кона следовало, что и молекулярные орбитали в приближении Хартри - Фока должны определяться заданием электронной плотности. Были получены в общем виде и уравнения типа уравнений Хартри - Фока с потенциалами, зависящими лишь от электронной плотности (уравнения Кона - Шэма). Однако и в этом случае явный вид этих потенциалов был не известен, что привело к широкому фронту поиска достаточно достоверных выражений для этих потенциалов. К тому же, коль скоро явный вид соответствующих потенциалов был неизвестен, то при конструировании аппроксимирующих выражений оказалось возможным эффективно учесть вклад в потенциалы и от электронной корреляции. На основе широкого поиска, в том числе и решения ряда модельных задач были предложены такие конструкции (содержащие, например, электронную плотность и ее первые производные по пространственным переменным), которые дали весьма обнадеживающие результаты при расчетах свойств основных электронных состояний многих молекулярных систем. Поскольку при этом расчеты существенно упростились, оказалось возможным использовать различные варианты такого подхода для многоатомных молекул, включающих десятки и сотни атомов. Эти варианты получили общее название методов функционала плотности. Они широко используются  в настоящее время, будучи даже перенесенными и на возбужденные состояния.

 

Динамические модели

Задачи, связанные с изменение молекулярной системы во времени, определяются, как правило, динамикой ядерной подсистемы. Используемые здесь подходы меняются в широких пределах, однако потенциалы взаимодействия частиц в системе задаются в большинстве случаев либо на основе квантово-химических аппроксимаций, либо на основе модельных конструкций, опирающихся в свою очередь на результаты квантово-химических расчетов. Так, при анализе колебательных спектров жестких молекулярных систем обычно используют для потенциала гармоническое приближение, коэффициенты квадратичной формы которого оценивают на основе тех или иных приближений квантовой химии, межмолекулярное взаимодействие аппроксимируют линейными комбинациями кулоновского потенциала и потенциала Леннард-Джонса и т. п.

В тех же случаях, когда изменение системы во времени характеризуется качественными изменениями электронного состояния системы, приходится переходить к неэмпирической молекулярной динамике, для анализа которой потенциальная энергия электронной подсистемы рассчитывается для каждой конкретной ядерной конфигурации. Такие конструкции, хотя они и существенно более трудоемки и потому ограничены при расчетах меньшим числом атомов в молекуле, имеют заметно большую предсказательную силу. Исходным при этом является временное уравнение Шрёдингера, тогда как для решения его существует набор методов различного уровня и сложности, и точности получаемых результатов. Часть ядерных переменных может быть фиксирована, либо сможет рассматриваться некоторая траектория перемещения образа системы по потенциальной поверхности.

Стационарные квантово-химические расчеты в сочетании с анализом нормальных колебаний молекул позволяют оценить константу скорости процесса, например, при ионизации или диссоциации молекул либо при их столкновении при химической реакции. Тем не менее, при решении динамических задач остается еще ряд подлежащих решению проблем, например, проблема задания начальных условий, проблема эволюции со спонтанным излучением в ходе этой эволюции либо с переходами между состояниями и т.п.

Остается в том числе и проблема неадиабатического характера многих химических превращений.

 

Заключение

Подводя итог сказанному выше, можно преде всего отметить, что без квантовохимических расчетов в настоящее время не обходится практически ни одно серьезное исследование структуры или физико-химических свойств молекул либо установление связи различных свойств молекул с их строением, как впрочем и анализ элементарных процессов и стадий химических превращений (хотя бы на качественном уровне). Созданые в последней четверти прошедшего века и постоянно совершенствующиеся программы квантовохимических расчетов позволяют получать достоверную информацию о равновесной геометрической конфигурации молекул, о гармонических частотах колебаний и частотах первых электронных переходов, об энергиях превращений различного рода, о дипольных моментах, поляризуемостях и распределении заряда в молекулах, о параметрах, определяющих спектры ЭПР и ЯМР. Разработка методов функционала плотности, базирующихся в конечном итоге на полном или частичном учете статистического характера поведения систем с большим числом электронов, привела к их широкому распространению при расчетах многоэлектронных систем, в том числе систем, включающих тяжелые атомы.

На сегодняшний день созданы весьма изощренные методы расчета стационарных состояний. Многие из них, однако, применимы лишь для рассмотрения свойств основного состояния, тогда как серьезный анализ свойств возбужденных состояний в существенной степени остается вне современных возможностей. И это на самом деле одна из первоочередных проблем, которые придется решать в ближайшие годы, поскольку роль специфики возбужденных состояний в спектроскопии, их роль в химической кинетике, в проявлениях плотных систем возбужденных состояний при наличии тяжелых атомов и вблизи диссоциационных пределов несомненна. К тому же при химических реакциях вблизи переходного состояния от реагентов к продуктам реакции перестает быть справедливой слабая зависимость электронной волновой функции от конфигурации ядер, т. е. нарушается адиабатическое приближение, становятся значимыми подбарьерные переходы и т. п.

Состояние квантовой химии в настоящее время достигло такого уровня, когда стало возможным учитывать влияние среды на физико-химические характеристики и химическое поведение молекул. Это направление интенсивно развивалось за последние годы. Если на протяжении длительного времени в прошлом столетии среда учитывалась лишь на простейшем уровне за счет введения некоторого фиксированного значения диэлектрической постоянной, характеризующей однородную среду, то сейчас уже разработаны и более усложненные модели, позволяющие учесть неоднородность среды и ее изменение вблизи рассматриваемой молекулы. В этих моделях используются достаточно аккуратные потенциалы, создаваемые молекулами окружения, и, как правило, методы молекулярной динамики, позволяющие оптимизировать конфигурацию молекул окружения.

Особые подходы стали развиваться и при рассмотрении поведения наноразмерных молекулярных систем, где поверхностные эффекты играют определяющую роль при формировании равновесной конфигурации наносистемы и электростатического потенциала, создаваемого этой системой, при локализации дефектов в ней, при взаимодействии таких систем с биомолекулами и т. п. Бурное развитие нанотехнологий и нанохимии в существенной степени было подготовлено всем накопленным объемом теоретических, главным образом квантовохимических знаний.

Следует отметить также, что ряд направлений развития и методических подходов выше не были затронуты, поскольку они требуют отдельного обсуждения. Полностью остались без внимания проблемы и направления развития квантовой биохимии, проблемы расчета ровибронных состояний молекул в ангармоническом приближении, проблемы квантовой фотохимии, проблемы зародыше- и фазообразования и ряд других. Квантовая химия продолжает оставаться активно развивающейся наукой, в современном состоянии которой отчетливо просматриваются ближайшие перспективы как ее фундаментального, так и прикладного развития.

К сожалению, широкая доступность и разнообразие квантовохимических программ подчас приводит к кажущейся легкости их использования без должного понимания того, что техника эта требует весьма квалифицированного обращения. В частности, нередко можно встретить утверждения об ограниченности возможностей квантовохимическихметодов применительно к тем или иным системам – утверждения, в основном связанные с отсутствием понимания того, какие именно методы и в каком именно приближении могут и должны быть использованы при решении той или иной конкретной задачи.

 

Рекомендуема литература:

Степанов Н. Ф. Квантовая механика и квантовая химия.  М.: «Мир», 2001. 519 c.

Цирельсон В. Г. Квантовая химия. Молекулы, молекулярные системы и твердые тела. М.: « Бином», 2010. 496 с.

Барановский В. И. Квантовая механика и квантовая химия.  М.: «Academia», 2008. 382 с.

Piela L.  Ideas of quantum chemistry. “Elsevier”, 2007. XXXIV+ 1086 pp.

Эта статья еще не написана, но вы можете сделать это.